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1. INTRODUCTION

‘Autoregressive spectral estimation has become an important method of
spectral estimation in recent years (see Akaike (1969), Parzen (1974),
Ulrych and Bishop (1975), and Beamish and Priestley (1981), for example)
despite 1) a continuing discussion of the problems of order determination
and 2) a lack of easily applied procedures for determining confidence
intervals or bands on the function being estimated.

In this paper we derive asymptotic 100 (1-a)% simultaneous confidence
bands for an autoregressive spectral density assuming one has data from a
finite order autoregressive process with known order or conditional upon
having correctly determined the order if it is unknown.

The bands are derived in section 2 and their implementation described

on simulated data in section 3.

2. SIMULTANEOUS CONFIDENCE BANDS

The basic property of autoregressive processes that we shall use is
that the reciprocal of the autoregressive spectral estimator is a linear
combination of a finite number of asymptotically normal random variables

whose asymptotic covariance matrix is easily consistently estimated. Thus

one can use a Scheffé (1953) type projection argument to determine asymptotic

confidence bands on the reciprocal of the autoregressive spectral density
(and thus on the density itselif) at all frequencies.
Let Y be an autoregressive process of order p with coefficients

a(1),...,a(p) and noise variance 02, i.e.

deteuiniiieilcamdhade:




P
T a(j)Y(t-]) = e(t) , t=0,%1,+#2,...
j=0

where a(0) = 1, ¢ is a white nolse series of uncorrelated zero mean random
variables having common variance 02, and the zeros of the complex valued

p
polynomial g(z) = ) a(j)zj are all greater than one in modulus. Then we
=0
write Y » AR(p,g,ci) and note that the covariance function R{v) = E(Y(t)Y(t+v)),

v=0,+1,..., the speccral density function f(w) = L ) R(v)ef'vw , wel-m,7],

2n
vE-®
and the parameters a and o2 are related by
flw) = o ' (-n,7] (2.1)
w T oo , wel-m,n], .
lg(e')|
P
Y «(j)IR(j-v) =6 o2 , V0, (2.2)

j=0 Y

where cv is the Kronecker delta. If on the other hand, Y is a moving average

process of order q and parameters g(1),...,8(q), and o2, i.e

Y(t) = 3 B(k)e(t-k) , t=041,...,

k=0
. k
where 8(0) = 1, we have, with h(z) = g (k) z,
k=0
-
q-§VI
R(v) = (o2 B(k)g(k+|v]) |vli< q ,

k=0

e

Eanoctie slslh. coiuthioe i




flw) = 3= § R(v)eive

v=-q
DE‘\\ For
= 1 [r(0) + 2 E R(v) Cos vu] SO Xﬂ
v=1 CLmpranced ]
.otivahoatione
2 H - e ——
=2 |he')|2 , wel-n,nl. f
Yo e e
_Uistribution/ L »
Avallability Codes
Thus, if Y+AR(p,a,02) we have f(w)>0 for all w and T Avail and/or ]
Dist Special
_ 1 = 4n2/g2 iw 2 T A !
h(w) = f(J 27 Ig(e )l 5 (w)l’ | 4

where §T(w) = (5%3 %-Cos Wyeves %-Cos pw), and yT = (y(0),y(1),...,v(p)),

st

with

p-v
v =& T alDalr) , ve0,...p.

j=0

Thus the reciprocal of f is a linear combination of the parameters

v(0),y(1),...,v(p).

Let YMAR(p,g,oz) and let Y(1),...,Y(n) be a sample realization from Y.
Let §T = (éT,Gz) = (a(1),...,a(p),02) be estimators of the parameters
QT - (gT,oz) = (a(1),...,a(p),02) that have the same asymptotic distribution

as the maximum likelihood estimators of 8, i.e (see Parzen (1961))
/o (6-0) T, (0,1(0)) (2.3)
- - p+l Y :

where




r' -
f(e) = 21! 0
~ 3] ~
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p

and Pp is the (pxp) Toeplitz covariance matrix of Y(1),...,Y(p). Estimators
having this asymptotic distribution include

(1) The Yule-Walker estimators (YWE), i.e the solution to the
Yule-Walker equations (2.2) with

. 1 T-v
R(v) = T }  Y(e)Y(e+v) ,  v=0,...,p
t=1
replacing R({v).
(2) The Least Squares estimators (LSE), i.e the values a(l),...,a(p)
minimizing
T
S{a) = 7 (Y(t)-a()Y(t-1)-...-a(p)Y(t-p)}2,
t=p+]
and ¢2 = S(a)/(n-p).

3) The Burg estimators (BGE), (see Ulrych and Bishop (1975) for a
description of these estimators).

Then the autoregressive spectral estimator f of f consists of evaluating
(2.1) with § replacing §. |If the order p is unknown a priori there are
several procedures (see Hannan and Quinn (1979), for example) for finding a
value p from the data which as n»= has probability one of determining the
correct order p.

Then the confidence bands are given by the following Theorem:




Theorem 2.1 Let Y(1),...,Y(n) be a sample realization from a Gaussian
AR(p,g,oz) time series and let a(1),...,a(p), and 62 be estimators satisfying

(2.3). Let

R PV. .
Y(ﬂ*‘iﬁ ] alB)a(i+v) ,  v=0,...,p
o2 =0

and h(w) = - L . %— [y(0) + 2 E 7(v) cos vwl. Let 8' = (aT, 1/02),
flw " v=] ~ -

éT

= (&T, 1/62), and B(B) be the (p+1) x (p+1) matrix having (2,m) element

me(g) = o2y (2-1) , m=p+1

2 2
ﬂgf 6,(2.m)+§}— Gz(i,m) . m=1l,...,p

g=1,...,p+l, where Gl(z,m) = a(m+(2-1)) if m<p-(2-1) and zero otherwise,
while dz(z,m) = a(m-(2-1)) if m>2-1 and zero otherwise. Then:

a) /F'(E-Y) E Np+l (g,t (I)) where t(!) = B(?)t(g)B(?T), and

- | n
$(8) = a?r 0
- P ~

OT 2/0"

L N

b) Asymptotically, as n+~, the probability is at least l-a that

simul taneously for all w ¢ [0,n],

—_—  flw) ¢ —
h(w) + S(w) h(w) - S(w)

deccite




where if h(w) - S(w) < 0 we use infinity as the upper limit, and

2
X
s2(w) = —2E T $H)x (W),

with Xi,p+l being the upper o critical value of a Chi square distribution
having p+l degrees of freedom.

Proof To prove (a) we note that from (2.3) and the definition of g we have
/n (é-g) 2 Np+l(0,t(8)). Then defining ¢ = 1/62 and ¢ = 1/52, we have for

v=0,...,P,

. p-v
/nolv(v) -y(W)) = 452§ /e {a(f)alj+v) - calf)alj+v)}

n
j=0
p-v R - " R
=422 § /n {ca(i)a(j+v) - ca(jla(j+v) + ca(jla(j+v)
j=0

- ca(jalj+v) +ca(i)a(j+v) - calida(j+v)}

p-v " .
= b2 § /n {ca(j+v) [a(i)-al()] + ali)al(j+v) (é-¢)
j=0

+ ca(j) [a(j+v) - a(j+v)]}

ee

hn? piv {ca(j+v) /n [a(i)~a(j)] + a(j)a(j+v) /A (c-c)
j=0

+ ca(j) /o [a(j+v) - a(j+v)]}

pcv -
= bn?2 J calj+v) /n [a(j)-a(]))]

j=0
. p-v -
+ ba2/n (c-c) ] a(j)a(j+v) + 4n2 f ca(j-v) /n [a(j)-a(j)],
=0 Juv

N Y TN L
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where we write Xn N Yn to indicate that the sequences {Xn}. {Yn} of random
variables converge in distribution to the same random variables, and we have
used Slutsky's Theorem (Rao (1973), p. 122) repeatedly.

Thus we have shown that /n (y-y) ~ V/n B(a)(é—e) and (a) follows.

From (a) then we have
‘\_ T "" ‘_ v 2
n(Y Y) } (!) (I Y) > Xa41

and since the elements of f(y) are continuous functions of the elements of
vy we have (Rao (1973), p. 388)

n (i"!)T t- 1

Ayl D
() (y-y) 5 Xg+l
Thus the probability is (asymptotically) 1-a that the true parameter y lies

inside the ellipsoid defined as the set of vectors & satisfying
A T o n
(y=2) " M(3-2) <1 ,

-1,~ 2 2 .
where M = n § (Y)/xa,p+l and Xq,p+l is the upper a critical value of a

X§+' distribution. But (Scheffe (1959), p. 407, et. sec.), y is in this

ellipsoid if and only if
T - T Voqk
Ix" (r=v)| < [x' M L

for all (p+1) dimensional vectors x and thus in particular only if (for

vectors f(w))

Bt B il

P




|ﬁ(w)‘h(w)| _<_ S(w) ’ [otﬂli

giving a 100(1-a)% simultaneous confidence band for h(w) = 1/f(w) as

h(w) - S(w) < h(w) < h(w) + S(w).

Then the reciprocal of this gives a simultaneous confidence band for f,
where if h{w) - S(w) < O we use infinity as the upper limit on f(w) which

we can do without decreasing the probability content of the bands.

3. EXAMPLES

To illustrate the method of section 2 we calculated the autoregressive
spectral estimator and confidence bands for 10 sample realizations of
length 200 for each of three AR processes (see Beamish and Priestley (1981));
i.e AR(2, -.4, -.45, 1), AR(5, 1.7, 2.4, 1.634, .872, .168, 1), and AR(4,
-2.7607, 3.8106, -2.6535, .9238, 1). These processes have characteristic
polynomial zeros whose moduli are given by (1.11, 2.00), (1.12, 1.12, 1.19,
1.19, 3.33), and (1.01998, 1.01998, 1.019798, 1.019798) respectively, and have
variances 2.66, 30.59, and 761.3. Further, the ratio of the maximum to
the minimum values of the spectral densities for the three models are
approximately 111.5, 41,800, and 6x10%. Thus the performance of our method
on these models should be representative of its performance on a wide class
of AR models. In Figures A-C we display on a log scale typical point
estimators and 95% confidence bands for the spectral density of the AR(2),

AR(5), and AR(4) models respectively using the Burg estimators. The true




spectral density (the curve with the x's) is superimposed on the graphs. {
fach curve consists of connecting values of the various functions at the

1u) equally spaced points between O and I (labelled on the graph 0 to 1/2

cycles per sampling interval).

On the graphs, the largest noninfinite value of upper limits is assigned

e

to 1/(h(w) - S(w)) whenever a(w) - S(w) < 0. Exampies of this include

o

frequencies near .12 for the AR(4) model and those around .32 for the AR(5).
We have found this to be a useful diagnostic in practice as peaks such
as those in these simulated data may in fact be indicating the existence
of deterministic components in real data in which case the spectral density
does not exist.

In summary then, the confidence bands given in section 2 appear to

work well on a wide variety of autoregressive models.
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